0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
package example_2;
public class Test {
public static int divBy(int x){
int r = 0;
int y;
while (x > 0) {
y = 2;
x = x/y;
r = r + x;
}
return r;
}
public static void main(String[] args) {
if (args.length > 0) {
int x = args[0].length();
int r = divBy(x);
// System.out.println("Result: " + r);
}
// else System.out.println("Error: Incorrect call");
}
}
Generated 15 rules for P and 5 rules for R.
Combined rules. Obtained 1 rules for P and 1 rules for R.
Filtered ground terms:
172_0_divBy_LE(x1, x2, x3) → 172_0_divBy_LE(x2, x3)
194_0_main_Return(x1) → 194_0_main_Return
Filtered duplicate args:
172_0_divBy_LE(x1, x2) → 172_0_divBy_LE(x2)
Combined rules. Obtained 1 rules for P and 1 rules for R.
Finished conversion. Obtained 1 rules for P and 1 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x0[0] > 1 && 0 <= x0[0] / 2 →* TRUE)∧(172_0_divBy_LE(x0[0]) →* 172_0_divBy_LE(x0[1])))
(1) -> (0), if ((172_0_divBy_LE(x0[1] / 2) →* 172_0_divBy_LE(x0[0])))
(1) (&&(>(x0[0], 1), <=(0, /(x0[0], 2)))=TRUE∧172_0_divBy_LE(x0[0])=172_0_divBy_LE(x0[1]) ⇒ 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0]))≥NonInfC∧172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0]))≥COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))∧(UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥))
(2) (>(x0[0], 1)=TRUE∧<=(0, /(x0[0], 2))=TRUE ⇒ 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0]))≥NonInfC∧172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0]))≥COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))∧(UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥))
(3) (x0[0] + [-2] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(4) (x0[0] + [-2] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (x0[0] + [-2] ≥ 0∧[2]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (x0[0] ≥ 0∧[4] + [2]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16 + (2)bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(7) (x0[0] ≥ 0∧[1] + x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16 + (2)bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(8) (&&(>(x0[0], 1), <=(0, /(x0[0], 2)))=TRUE∧172_0_divBy_LE(x0[0])=172_0_divBy_LE(x0[1]) ⇒ COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1]))≥NonInfC∧COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1]))≥172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))∧(UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥))
(9) (>(x0[0], 1)=TRUE∧<=(0, /(x0[0], 2))=TRUE ⇒ COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[0]))≥NonInfC∧COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[0]))≥172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[0], 2)))∧(UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥))
(10) (x0[0] + [-2] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(11) (x0[0] + [-2] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(12) (x0[0] + [-2] ≥ 0∧[2]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(13) (x0[0] ≥ 0∧[4] + [2]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18 + (2)bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(14) (x0[0] ≥ 0∧[1] + x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18 + (2)bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(172_1_main_InvokeMethod(x1)) = [-1] + [-1]x1
POL(172_0_divBy_LE(x1)) = [-1] + [-1]x1
POL(0) = 0
POL(194_0_main_Return) = [-1]
POL(172_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(COND_172_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(<=(x1, x2)) = [-1]
POL(2) = [2]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, 2)1 @ {}) = max{x1, [-1]x1} + [-1]
POL(/(x1, 2)1 @ {172_1_MAIN_INVOKEMETHOD_1/0, 172_0_divBy_LE_1/0}) = max{x1, [-1]x1} + [-1]
COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1])) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))
172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0])) → COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))
COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1])) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))
172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0])) → COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))
FALSE1 → &&(TRUE, FALSE)1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer