(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: example_2/Test
package example_2;


public class Test {

public static int divBy(int x){
int r = 0;
int y;
while (x > 0) {
y = 2;
x = x/y;
r = r + x;
}
return r;
}

public static void main(String[] args) {
if (args.length > 0) {
int x = args[0].length();
int r = divBy(x);
// System.out.println("Result: " + r);
}
// else System.out.println("Error: Incorrect call");
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
example_2.Test.main([Ljava/lang/String;)V: Graph of 67 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 15 rules for P and 5 rules for R.


Combined rules. Obtained 1 rules for P and 1 rules for R.


Filtered ground terms:


172_0_divBy_LE(x1, x2, x3) → 172_0_divBy_LE(x2, x3)
194_0_main_Return(x1) → 194_0_main_Return

Filtered duplicate args:


172_0_divBy_LE(x1, x2) → 172_0_divBy_LE(x2)

Combined rules. Obtained 1 rules for P and 1 rules for R.


Finished conversion. Obtained 1 rules for P and 1 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
172_1_main_InvokeMethod(172_0_divBy_LE(0)) → 194_0_main_Return

The integer pair graph contains the following rules and edges:
(0): 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0])) → COND_172_1_MAIN_INVOKEMETHOD(x0[0] > 1 && 0 <= x0[0] / 2, 172_0_divBy_LE(x0[0]))
(1): COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1])) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[1] / 2))

(0) -> (1), if ((x0[0] > 1 && 0 <= x0[0] / 2* TRUE)∧(172_0_divBy_LE(x0[0]) →* 172_0_divBy_LE(x0[1])))


(1) -> (0), if ((172_0_divBy_LE(x0[1] / 2) →* 172_0_divBy_LE(x0[0])))



The set Q consists of the following terms:
172_1_main_InvokeMethod(172_0_divBy_LE(0))

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0)) → COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0, 1), <=(0, /(x0, 2))), 172_0_divBy_LE(x0)) the following chains were created:
  • We consider the chain 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0])) → COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0])), COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1])) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2))) which results in the following constraint:

    (1)    (&&(>(x0[0], 1), <=(0, /(x0[0], 2)))=TRUE172_0_divBy_LE(x0[0])=172_0_divBy_LE(x0[1]) ⇒ 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0]))≥NonInfC∧172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0]))≥COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))∧(UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 1)=TRUE<=(0, /(x0[0], 2))=TRUE172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0]))≥NonInfC∧172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0]))≥COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))∧(UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-2] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-2] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-2] ≥ 0∧[2]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧[4] + [2]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16 + (2)bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (6) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (7)    (x0[0] ≥ 0∧[1] + x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16 + (2)bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)







For Pair COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0)) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0, 2))) the following chains were created:
  • We consider the chain 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0])) → COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0])), COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1])) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2))) which results in the following constraint:

    (8)    (&&(>(x0[0], 1), <=(0, /(x0[0], 2)))=TRUE172_0_divBy_LE(x0[0])=172_0_divBy_LE(x0[1]) ⇒ COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1]))≥NonInfC∧COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1]))≥172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))∧(UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥))



    We simplified constraint (8) using rules (I), (II), (III), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(x0[0], 1)=TRUE<=(0, /(x0[0], 2))=TRUECOND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[0]))≥NonInfC∧COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[0]))≥172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[0], 2)))∧(UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x0[0] + [-2] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x0[0] + [-2] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x0[0] + [-2] ≥ 0∧[2]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x0[0] ≥ 0∧[4] + [2]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18 + (2)bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (13) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (14)    (x0[0] ≥ 0∧[1] + x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18 + (2)bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0)) → COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0, 1), <=(0, /(x0, 2))), 172_0_divBy_LE(x0))
    • (x0[0] ≥ 0∧[1] + x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))), ≥)∧[(-1)Bound*bni_16 + (2)bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)

  • COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0)) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0, 2)))
    • (x0[0] ≥ 0∧[1] + x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_18 + (2)bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(172_1_main_InvokeMethod(x1)) = [-1] + [-1]x1   
POL(172_0_divBy_LE(x1)) = [-1] + [-1]x1   
POL(0) = 0   
POL(194_0_main_Return) = [-1]   
POL(172_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1   
POL(COND_172_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(<=(x1, x2)) = [-1]   
POL(2) = [2]   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(/(x1, 2)1 @ {}) = max{x1, [-1]x1} + [-1]   
POL(/(x1, 2)1 @ {172_1_MAIN_INVOKEMETHOD_1/0, 172_0_divBy_LE_1/0}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1])) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))

The following pairs are in Pbound:

172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0])) → COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))
COND_172_1_MAIN_INVOKEMETHOD(TRUE, 172_0_divBy_LE(x0[1])) → 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(/(x0[1], 2)))

The following pairs are in P:

172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0])) → COND_172_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), <=(0, /(x0[0], 2))), 172_0_divBy_LE(x0[0]))

At least the following rules have been oriented under context sensitive arithmetic replacement:

FALSE1&&(TRUE, FALSE)1
/1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
172_1_main_InvokeMethod(172_0_divBy_LE(0)) → 194_0_main_Return

The integer pair graph contains the following rules and edges:
(0): 172_1_MAIN_INVOKEMETHOD(172_0_divBy_LE(x0[0])) → COND_172_1_MAIN_INVOKEMETHOD(x0[0] > 1 && 0 <= x0[0] / 2, 172_0_divBy_LE(x0[0]))


The set Q consists of the following terms:
172_1_main_InvokeMethod(172_0_divBy_LE(0))

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE